Cooperative Retraction of Bundled Type IV Pili Enables Nanonewton Force Generation

نویسندگان

  • Nicolas Biais
  • Benoît Ladoux
  • Dustin Higashi
  • Magdalene So
  • Michael Sheetz
چکیده

The causative agent of gonorrhea, Neisseria gonorrhoeae, bears retractable filamentous appendages called type IV pili (Tfp). Tfp are used by many pathogenic and nonpathogenic bacteria to carry out a number of vital functions, including DNA uptake, twitching motility (crawling over surfaces), and attachment to host cells. In N. gonorrhoeae, Tfp binding to epithelial cells and the mechanical forces associated with this binding stimulate signaling cascades and gene expression that enhance infection. Retraction of a single Tfp filament generates forces of 50-100 piconewtons, but nothing is known, thus far, on the retraction force ability of multiple Tfp filaments, even though each bacterium expresses multiple Tfp and multiple bacteria interact during infection. We designed a micropillar assay system to measure Tfp retraction forces. This system consists of an array of force sensors made of elastic pillars that allow quantification of retraction forces from adherent N. gonorrhoeae bacteria. Electron microscopy and fluorescence microscopy were used in combination with this novel assay to assess the structures of Tfp. We show that Tfp can form bundles, which contain up to 8-10 Tfp filaments, that act as coordinated retractable units with forces up to 10 times greater than single filament retraction forces. Furthermore, single filament retraction forces are transient, whereas bundled filaments produce retraction forces that can be sustained. Alterations of noncovalent protein-protein interactions between Tfp can inhibit both bundle formation and high-amplitude retraction forces. Retraction forces build over time through the recruitment and bundling of multiple Tfp that pull cooperatively to generate forces in the nanonewton range. We propose that Tfp retraction can be synchronized through bundling, that Tfp bundle retraction can generate forces in the nanonewton range in vivo, and that such high forces could affect infection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Type IV-like pili formed by the type II secreton: specificity, composition, bundling, polar localization, and surface presentation of peptides.

The secreton or type II secretion machinery of gram-negative bacteria includes several type IV pilin-like proteins (the pseudopilins) that are absolutely required for secretion. We previously reported the presence of a bundled pilus composed of the pseudopilin PulG on the surface of agar-grown Escherichia coli K-12 cells expressing the Klebsiella oxytoca pullulanase (Pul) secreton genes at high...

متن کامل

Direct observation of extension and retraction of type IV pili.

Type IV pili are thin filaments that extend from the poles of a diverse group of bacteria, enabling them to move at speeds of a few tenths of a micrometer per second. They are required for twitching motility, e.g., in Pseudomonas aeruginosa and Neisseria gonorrhoeae, and for social gliding motility in Myxococcus xanthus. Here we report direct observation of extension and retraction of type IV p...

متن کامل

Sticky and Sweet: The Role of Post-Translational Modifications on Neisserial Pili

Neisseria gonorrhoeae and N. meningitidis are obligate human pathogens of medical importance which are highly related at the genomic level and have a conserved array of pathogenicity determinants (Virji, 2009). N. meningitidis resides in the human nasopharynx and is the causative agent of transmissible meningitis and septic shock (Stephens et al., 2007). N. gonorrhoeae is a resident of the urog...

متن کامل

Emergence of complex behavior in pili-based motility in early stages of P. aeruginosa surface adaptation

Pseudomonas aeruginosa move across surfaces by using multiple Type IV Pili (TFP), motorized appendages capable of force generation via linear extension/retraction cycles, to generate surface motions collectively known as twitching motility. Pseudomonas cells arrive at a surface with low levels of piliation and TFP activity, which both progressively increase as the cells sense the presence of a ...

متن کامل

High-force generation is a conserved property of type IV pilus systems.

The type IV pilus (T4P) system of Neisseria gonorrhoeae is the strongest linear molecular motor reported to date, but it is unclear whether high-force generation is conserved between bacterial species. Using laser tweezers, we found that the average stalling force of single-pilus retraction in Myxococcus xanthus of 149 +/- 14 pN exceeds the force generated by N. gonorrhoeae. Retraction velociti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS Biology

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2008